
New exactly solvable isospectral partners for symmetric potentials

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2004 J. Phys. A: Math. Gen. 37 2509

(http://iopscience.iop.org/0305-4470/37/6/039)

Download details:

IP Address: 171.66.16.65

The article was downloaded on 02/06/2010 at 19:53

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/37/6
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL

J. Phys. A: Math. Gen. 37 (2004) 2509–2518 PII: S0305-4470(04)67858-9

New exactly solvable isospectral partners for PT
symmetric potentials

Anjana Sinha1 and Pinaki Roy2

1 Department of Applied Mathematics, Calcutta University 92, APC Road, Kolkata 700009, India
2 Physics and Applied Mathematics Unit, Indian Statistical Institute, Kolkata 700108, India

E-mail: anjana23@rediffmail.com and pinaki@isical.ac.in

Received 18 August 2003, in final form 11 November 2003
Published 28 January 2004
Online at stacks.iop.org/JPhysA/37/2509 (DOI: 10.1088/0305-4470/37/6/039)

Abstract
We examine, in detail, the possibility of applying the Darboux transformation
to non-Hermitian Hamiltonians. In particular we propose a simple method of
constructing exactly solvable PT symmetric potentials by applying Darboux
transformation to higher states of an exactly solvable PT symmetric potential.
It is shown that the resulting Hamiltonian and the original one are pseudo
supersymmetric partners. We also discuss application of the Darboux
transformation to Hamiltonians with spontaneously broken PT symmetry.

PACS numbers: 03.65.−w, 03.65.Ge

1. Introduction

Ever since it was conjectured by Bender et al that some non-Hermitian Hamiltonians
exhibiting symmetry under the combined transformation of parity (P : x → −x), and
time reversal (T : i → −i) admit real eigenvalues [1, 2], non-Hermitian Hamiltonians have
been the basis of many recent works on PT symmetry and pseudo-Hermiticity [3, 4], because
of intrinsic interest and their possible applications in molecular physics, quantum chemistry,
superconductivity, quantum field theory and others.

On the other hand, there are not many examples of exactly solvable complex potentials
(both PT invariant as well as otherwise). However, as in the Hermitian case, there have been
attempts to expand the class of exactly solvable non-Hermitian potentials by using different
methods [5–7]. In the Hermitian case a popular method for obtaining new exactly solvable
potentials is to apply the Darboux transformation [8] to the ground state of an exactly solvable
potential. However, when applied to the excited states, this transformation produces not just
one isospectral potential, but a number (depending on the nodes of the wavefunction) of nearly
isospectral potentials which are defined not over the whole domain, but in disjoint intervals
[9]. Here our objective is to apply the Darboux transformation to non-Hermitian potentials
and it will be shown that for such potentials, it is possible to have wavefunctions without nodes
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on the real line, by a reasonable choice of parameters. In the present paper, we shall use this
result to construct non-trivial isospectral partners of exactly solvable complex potentials. In
particular, we shall apply the Darboux transformation to the well-knownPT symmetric Scarf II
potential

V (x) = −V1 sech2 x − iV2 sech x tanh x V1 > 0 V2 �= 0 (1)

and generate a series of new exactly solvable non-Hermitian potentials with real spectrum.
We note that in the case of Hermitian quantum mechanics, the Darboux transformation

is equivalent to supersymmetry [10]. However this is not so in the non-Hermitian case. So it
is natural to ask whether there exists any symmetry which relates the two Hamiltonians, i.e.,
the original and the one obtained by the Darboux transformation. The answer to this question
is in the affirmative and it will be shown that the two Hamiltonians are related by pseudo
supersymmetry [11]. In other words, the Hamiltonians obtained by intertwining are pseudo
supersymmetric partners.

Finally we shall examine the problem of applying the Darboux transformation to models
with spontaneously broken PT symmetry. It is known [12] that models with spontaneously
broken PT symmetry exhibit a complex spectrum and all the energy levels appear as complex
conjugate pairs. It will be shown that if the Darboux transformation is applied to such a system
one gets a potential with complex energy eigenvalues but as singlets.

The paper is organized as follows: in section 2 we briefly present the Darboux construction;
in section 3 we construct new PT symmetric potentials; in section 4 we show that the
partner Hamiltonians are connected by pseudo supersymmetry; in section 5 we examine the
nature of the spectrum obtained by applying the Darboux transformation to a potential with
spontaneously broken PT symmetry and finally section 6 is devoted to a discussion.

2. Darboux transformation

To make the paper self-contained we start with a brief review of the Darboux transformation
[8, 9]. A particle moving in the potential v(x) (real or complex) is characterized by the
Hamiltonian

H = − d2

dx2
+ v(x). (2)

(The units used are h̄ = 2m = 1 for convenience.)
If the particle is in the mth state, (i.e., m is the quantum number equal to the number of

nodes of the mth eigenfunction ψm(x) of the starting potential v(x)), and the energy scale is
adjusted so that the mth energy eigenvalue is exactly zero (Em = 0), then the Schrödinger
equation reads

Hψm =
(
− d2

dx2
+ v(x)

)
ψm = 0. (3)

Equation (3) has a potential

v(x) = ψ ′′
m

ψm

(4)

which is regular everywhere, so that the Hamiltonian in (3) may be represented as

H =
(
− d2

dx2
+

ψ ′′
m

ψm

)
. (5)

Thus if the general solution ψ = ψ(x) of the Schrödinger equation

d2ψ

dx2
+ [ε − v(x)]ψ = 0 (6)
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is known for all values of ε, and for a particular value of ε = Em, the particular solution is
ψm, then the general solution of the equation

d2φ

dx2
+ [E − u(x)]φ = 0 (7)

with

u(x) = ψm(x)
d2

dx2

(
1

ψm(x)

)

= 2

(
ψ ′

m

ψm

)2

−
(

ψ ′′
m

ψm

)
(8)

E = ε − Em (9)

for E �= 0 is

φn(x) = ψm(x)

{
ψn(x)

ψm(x)

}′

= ψ ′
n(x) −

(
ψ ′

m(x)

ψm(x)

)
ψn(x). (10)

Choosing different ψm, one obtains a series of non-trivial partners u(x) given by (8),
which contain all the states of the original potential v(x) except the mth state, i.e. the one
corresponding to the eigenstate ψm. It is easy to observe that the partners u(x) and v(x) are
related by

v(x) = Wm(x)2 − W ′
m(x) (11)

u(x) = Wm(x)2 + W ′
m(x) (12)

where

Wm(x) =
(

−ψ ′
m

ψm

)
. (13)

Though ψ ′
m �= 0 at the nodes xj , j = 1, 2, 3, . . . of ψm,Wm(x) has singularities at these

points. However, since the second derivative ψ ′′
m also vanishes at the nodes, from (4) v(x)

is regular everywhere. In the case of Hermitian SUSY QM, Wm is the superpotential, and
W 2

m(x) ± W ′
m(x) are called SUSY-m partner potentials [9]. However, one can construct the

partners for m = 0 only, as for non-zero m,Wm becomes singular and as a consequence such
potentials are not defined over R but over disjoint intervals, the number of intervals depending
on the value of m. Thus, for m = 1, there are two potentials, each of them defined on a
semi-infinite domain, for m = 2 there is one potential on a finite domain between nodes x1

and x2, and two potentials on the two semi-infinite domains (−∞, x1] and [x2, +∞), and
so on [9]. In the case of non-Hermitian quantum mechanics, Wm(x) is no longer singular
(and it is not the superpotential anymore). As a consequence the new potentials do not
have singularities on the real axis and are defined on (−∞,∞). Thus, if one of the partner
potentials is exactly solvable, this formalism enables one to construct an infinite number of
exactly solvable, non-trivial partners defined on the entire real line (−∞, +∞), unlike in the
case of Hermitian quantum mechanics.

3. New exactly solvable PT symmetric potentials

In this section, we shall construct isospectral partners of the complexified Scarf II potential.
This potential is given by

V (x) = −V1 sech2 x − iV2 sech x tanh x V1 > 0 V2 �= 0 (14)
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and it has been studied by various authors as it is not only invariant under PT symmetry, but
also P-pseudo Hermitian. This exactly solvable model has certain interesting properties. It
has a discrete spectrum that admits both real as well as complex conjugate energies, depending
on the relative strengths of its parameters V1 and V2. The normalized wavefunctions for this
potential are well known, being given by [12]

ψn(x) = �
(
n − 2p + 1

2

)
n!�

(
1
2 − 2p

) z−p(z∗)−qP
−2p− 1

2 ,−2q− 1
2

n (i sinh x) (15)

where P
α,β
n are the Jacobi polynomials given by [13]

P α,β
n (i sinh x) = �(n + α + 1)

�(n + 1)�(α + 1)
F (−n, n + α + β + 1;α + 1; z) (16)

and

z = 1 − i sinh x

2
(17)

p = −1

4
± 1

2

√
1

4
+ V1 + V2 = −1

4
± t

2
(18)

q = −1

4
± 1

2

√
1

4
+ V1 − V2 = −1

4
± s

2
(19)

t and s are defined with only the positive sign in the discriminant in p and q. The energy
eigenvalues are obtained as

En = −(n − p − q)2 n = 0, 1, 2, . . . <

(
s + t − 1

2

)
. (20)

Since V1 > 0, two cases arise for real V2, depending on the relative strengths of the real and
imaginary parts of the potential:

1. The case |V2| � V1 + 1
4 . In this case the potential and the wavefunctions are PT

invariant, p and q are real and one gets a real bound state spectrum. In addition to the
potential (1), the wavefunctions ψn(x) given in (15) are also PT invariant. Note that due
to normalization requirements only the values with the positive sign are allowed in (18)
and (19).
2. The case |V2| > V1 + 1

4 .PT symmetry is spontaneously broken, as though the potential
is PT invariant, the wavefunctions are no longer so. Either p or q is complex, and
all energies occur as complex conjugate pairs. Real energies are conspicuous by their
absence.

For purely imaginary V2, however, potential (1) is real, possessing only real energies.
However, when V2 has both real and imaginary parts, potential (1) loses its PT invariance,

and so will not be considered in this study.
We now consider the first case when PT symmetry is unbroken. Now, using the explicit

solution for the normalized wavefunction (15), we obtain

Wm(x) = −ψ ′
m(x)

ψm(x)

= (p + q) tanh x − i(p − q) sech x +
mb

c

F(−m + 1, b + 1; c + 1; z)

F (−m, b; c; z)
(21)
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where b and c stand for

b = −2p − 2q + 2 (22)

c = −2p + 1
2 . (23)

The exactly solvable potential U(m)(x), which is isospectral to the Scarf II potential (except
for the mth state), is obtained from the formula

U(m)(x) = W 2
m + W ′

m − βm. (24)

In writing the last expression we have made use of the fact that if v(x) and u(x) are isospectral,
so are V (x) and Um(x), given by

V (x) = {v(x) − βm} (25)

Um(x) = {u(x) − βm}. (26)

For the Scarf II potential, βm is calculated to be

βm = (p + q)2 − 2m(p + q) + m2. (27)

Thus this approach yields new interesting potentials, with eigenfunctions for this particular
case being given by (see equation (10)

φn(x) =
(

PmP ′
n − P ′

mPn

Pm

)
ψ0(x). (28)

In the above Pn stands for P
α,β
n (i sinh x) and P ′

n denotes differentiation of P
α,β
n (i sinh x) with

respect to x. Since P
α,β
n is well defined on the entire real line, so also is φn(x).

Let us analyse three low lying cases m = 0, 1, 2.
For m = 0

U(0)(x) = −{2(p2 + q2) − (p + q)} sech2 x − i(p − q)[2(p + q) − 1] sech x tanh x (29)

with eigenenergies

En = −(n + 1 − p − q)2 n = 0, 1, 2, 3, . . . (30)

and the ground state

φ0 = N0

(
1 − i sinh x

2

)−(p− 1
2 ) (

1 + i sinh x

2

)−(q− 1
2 )

. (31)

Thus for m = 0, the partners belong to the family of the so-called satellite potentials.
Equation (29) is also a Scarf II potential, with a different set of parameters, and shares all
the energies of (1) except for the ground state of V (x), which is missing in (29). So, this is
analogous to the Hermitian case.

m = 1 gives the first of the non-trivial potentials.

U(1)(x) = −{2(p2 + q2) − (p + q)} sech2 x − i(p − q)[2(p + q) − 1] sech x tanh x

+ 2

(
f ′

1

f1

)2

− 2(p − q)

f1
− 2 (32)

with

f1(x) = F

(
−1,−p − q − λ; 2p +

3

2
; z

)

=
{
−(p − q) +

i

2
(−2p − 2q + 1) sinh x

}
. (33)
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The ground state of the partner (32) is obtained from (10) as

φ0 = 2i
(

1
2 − p − q

)
(−p − q) + i

(
1
2 − p − q

)
sinh x

z−(p− 1
2 )(z∗)−(q− 1

2 ) (34)

with energy

E0 = −(−p − q)2. (35)

It can be shown that the state corresponding to ψ1 is excluded from the spectrum as it turns
out to be non-normalizable. All other states share identical energies with the original potential
(1). The excited states are obtained from (10) as

φn =
(

P1P
′
n+2 − P ′

1Pn+2

P1

)
ψ0 (36)

with energies

En = −(n + 2 − p − q)2 n = 0, 1, 2, 3, . . . . (37)

As P
α,β
n (i sinh x) has no zeroes on the real line, so the eigenfunctions are well defined. It

is easily observed from (36) that φn are normalizable. Moreover, the potential U(1)(x) so
constructed has no singularity on the real line, and hence is defined on the entire domain
(−∞, +∞). Also, for real values of the parameters p and q (corresponding to real energies)
the new potential, too, is invariant under PT transformation.

In an analogous way, the isospectral partner for m = 2 is found to be

U(2)(x) = −{2(p2 + q2) − (p + q)} sech2 x − i(p − q) [2(p + q) − 1] sech x tanh x

+ 2

(
f ′

2

f2

)2

+
σ − 6(p − q)i sinh x

f2
− 8

(38)

with

f2(x) = F

(
−2,−p − q − λ; 2p +

3

2
; z

)
(39)

σ = −2p − 2q + 2(−2p + 1
2

) (−2p + 3
2

)
{

2(p − q)2 −
(−2q + 3

2

) (−2p + 3
2

)
(−2p − 2q + 2)

+
1

2
(3 + 2p + 2q)(3 − 2p − 2q)

}
. (40)

For a visual representation as well as for comparison, we have plotted the real and imaginary
parts of the potentials V,U(i) (i = 0, 1, 2). In figure 1, we have plotted the real parts of
V,U(i) (i = 0, 1, 2) for the parameter values V1 = 24, V2 = 18 while in figure 2, we have
plotted the imaginary parts of the same potentials for the same values of V1 and V2.

Since the Scarf II potential is always PT symmetric, so are its partners U(m)(x), for real
values of the parameters p and q (V1 + 1/4 � |V2|), as the functions fm(x) remain invariant
under PT . Moreover, all the new potentials so constructed are defined over the entire domain
(−∞, +∞), admit real bound state spectrum, and possess all the energies of the original
potential except for the mth state, if one starts with the mth order eigenfunction. Though
m = 0 gives the usual shape-invariant form, highly non-trivial, non-shape-invariant potentials
are obtained for non-zero m.
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Figure 1. Graph of real parts of V (solid), U(0) (dotted), U(1) (small dash), U(2) (large dash).
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Figure 2. Graph of imaginary parts of V (solid), U(0) (dotted), U(1) (small dash), U(2) (large
dash).

4. Pseudo supersymmetry and intertwining

It is well known that in the case of Hermitian quantum mechanics, the Darboux transformation
and supersymmetric quantum mechanics are equivalent. Although this is not so in the case of
non-Hermitian quantum mechanics, the Darboux transformation can still be implemented in
terms of intertwining operators. To see this we consider the intertwining operators A and B:

A = d

dx
+ Wm (41)

B = − d

dx
+ Wm (42)

where Wm is defined by (13), then the partner Hamiltonians

H± = − d2

dx2
+ W 2

m ± W ′
m (43)
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can be written as H− = BA and H+ = AB, where

H− =
(

− d2

dx2
+ v(x)

)
(44)

H+ =
(

− d2

dx2
+ u(x)

)
. (45)

Evidently, if ψn is an eigenfunction of H− with energy eigenvalue E−
n , then φn = Aψn is

also an eigenfunction of H+ with the same eigenvalue E−
n , except for n = m, since in this

case Aψm = 0.

H+Aψn = (AB)Aψn = A(H−ψn) = E−
n (Aψn). (46)

For Hermitian Hamiltonians, A and B are mutually adjoint operators (B = A†), giving the
well-known results of supersymmetry, namely, AH− = H+A or H−A† = A†H+.

To extend the idea of supersymmetry to include non-Hermitian Hamiltonians, we assume
the existence of a linear, invertible, Hermitian operator η, such that [11]

B = A# = η−1A†η. (47)

This allows one to rewrite the partner Hamiltonians as

H+ = B#B H− = BB# (48)

so that

BH+ = H−B H+B
# = B#H−. (49)

From (49) it is clear that B maps eigenfunctions of H+ to those of H− and A(= B#) does
the converse. Thus the mutually adjoint operators A and A† of conventional supersymmetric
quantum mechanics are replaced by their pseudo supersymmetric counterparts A and B when
the potential is non-Hermitian. However, we would like to point out that the choice of η is not
unique. To determine a form of η, let us note that a simple representation is given by [11]:

η = P Pf (x) = f (−x). (50)

It follows that for real potentials, (1) leads to B = A†, thus reproducing the conventional result
of supersymmetry. We note that the above results are quite general since they do not depend
on a specific Wm. Clearly the operator η can be found in the same way for higher values of m.
We thus conclude that in the complex case the Hamiltonians H± are pseudo supersymmetric
partners of each other. Finally to cast the above results in a formal pseudo supersymmetric
form, let us define the pseudo supercharges Q and Q# in the following way:

Q =
(

0 A

0 0

)
Q# = η−1Q†η =

(
0 0
B 0

)
. (51)

Thus the pseudo supercharges Q and Q# are nilpotent and they satisfy the following closed
algebra:

H = {Q,Q#} =
(

H+ 0
0 H−

)
=

(
AB 0
0 BA

)
[Q,H ] = [Q#,H ] = 0. (52)

We thus conclude that in the non-Hermitian case the Hamiltonians obtained by intertwining
are pseudo supersymmetric partners.
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5. A model with spontaneously broken PT symmetry

As mentioned earlier, there are two cases for the PT symmetric Scarf II potential, depending
on the relative strengths of V1 and V2, namely

(i) |V2| � V1 + 1
4 :

In this case, where the spectrum is real and discrete, each state is a singlet. This has
already been discussed in section 3.

(ii) |V2| > V1 + 1
4 :

In this case, PT symmetry is spontaneously broken. We can choose p to be real, taking
a single value with only the positive sign in (18) while q can take either of the following
values:

q± = −1

4
± i

s

2
(53)

where

s =
√

V2 − V1 − 1
4 (54)

giving rise to complex conjugate pairs of energies

E±
n = −µ2

n ± i µns n = 0, 1, 2, . . . µn = n − p + 1
4 . (55)

This case makes quite an interesting study and we shall investigate it further. Though the
original potential (14) is still PT invariant, the partners are no longer so. We note that
while the original potential V (x) does not depend explicitly on the parameters p and q,
the partner potential is explicitly dependent on these parameters. As a consequence there
are two partner potentials corresponding to V (x) (this is due to the fact that in this case
both the values of q are allowed). If the Darboux transformation is carried out by the mth
eigenstate ψ−

m (ψ+
m) of the original potential, then straightforward calculations show that the

corresponding state will be missing in the partner. Furthermore, the entire positive (negative)
sector E+

n = −(
µ2

n − s2

4

)
+i µns

(
E−

n = −(
µ2

n − s2

4

)− i µns
)

will be absent in the partner. Thus
the spectrum of the partner potential is quite different from that of the Scarf II potential, as the
former has only singlet complex energies. So, if one starts with the ground-state eigenfunction
ψ−

0 , then the partner potential (29) is of the form

U 0
−(x) = −

{(
2p2 − p − s2

2
+

3

8

)
+ is

}
sech2 x

−
{

i

(
2p2 − p +

s2

2
− 3

8

)
+ s

}
sech x tanh x (56)

while the wavefunctions and the corresponding energy values are given by

φ−
n (x) = ab

c
z−p(z∗)−

1
4 + is

2 F(a + 1, b + 1; c + 1; z)

E−
n = −µ2

n+1 − i µn+1s n = 0, 1, 2, . . .

(57)

where

a = −(n + 1) b = (
n + 3

2 − 2p
)

+ i s c = −2p + 1
2 . (58)
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6. Discussion

In this paper, we have explored the idea of applying the Darboux transformation to non-
Hermitian quantum mechanical systems. In particular we have obtained a series of new
exactly solvable PT symmetric potentials with real bound state spectra. The symmetry
aspect of the potentials has also been investigated and it has been shown that they are pseudo
supersymmetric. On the other hand when the Darboux transformation is applied to a system
with spontaneously broken PT symmetry the resulting potential admits a single tower of
energy. We would like to point out that this is not a characteristic feature only of models
with spontaneously broken PT symmetry but in general the same result would be obtained
whenever the original model posseses a doublet of states [14].
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